Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 78: 148-158, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286071

RESUMO

Focusing on the differences in the catalytic properties of two type I fatty acid synthases FasA and FasB, the fasA gene was disrupted in an oleic acid-producing Corynebacterium glutamicum strain. The resulting oleic acid-requiring strain whose fatty acid synthesis depends only on FasB exhibited almost exclusive production (217 mg/L) of palmitic acid (C16:0) from 1% glucose under the conditions supplemented with the minimum concentration of sodium oleate for growth. Plasmid-mediated amplification of fasB led to a 1.47-fold increase in palmitic acid production (320 mg/L), while fasB disruption resulted in no fatty acid production, with excretion of malonic acid (30 mg/L). Next, aiming at conversion of the palmitic acid producer to a producer of palmitoleic acid (POA, C16:1Δ9), we introduced the Pseudomonas nitroreducens Δ9-desaturase genes desBC into the palmitic acid producer. Although this resulted in failure, we noticed the emergence of suppressor mutants that exhibited the oleic acid-non-requiring phenotype. Production experiments revealed that one such mutant M-1 undoubtedly produced POA (17 mg/L) together with palmitic acid (173 mg/L). Whole genomic analysis and subsequent genetic analysis identified the suppressor mutation of strain M-1 as a loss-of-function mutation for the DtxR protein, a global regulator of iron metabolism. Considering that DesBC are both iron-containing enzymes, we investigated the conditions for increased iron availability to improve the DesBC-dependent conversion ratio of palmitic acid to POA. Eventually, supplementation of both hemin and the iron chelator protocatechuic acid in the engineered strain dramatically enhanced POA production to 161 mg/L with a conversion ratio of 80.1%. Cellular fatty acid analysis revealed that the POA-producing cells were really equipped with unnatural membrane lipids comprised predominantly of palmitic acid (85.1% of total cellular fatty acids), followed by non-native POA (12.4%).


Assuntos
Corynebacterium glutamicum , Ácido Palmítico , Ácido Palmítico/metabolismo , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica/métodos , Ácidos Graxos , Ferro/metabolismo
2.
Metab Eng ; 37: 1-10, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27044449

RESUMO

We have recently developed a Corynebacterium glutamicum strain that generates NADPH via the glycolytic pathway by replacing endogenous NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GapA) with a nonphosphorylating NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) from Streptococcus mutans. Strain RE2, a suppressor mutant spontaneously isolated for its improved growth on glucose from the engineered strain, was proven to be a high-potential host for l-lysine production (Takeno et al., 2010). In this study, the suppressor mutation was identified to be a point mutation in rho encoding the transcription termination factor Rho. Strain RE2 still showed retarded growth despite the mutation rho696. Our strategy for reconciling improved growth with a high level of l-lysine production was to use GapA together with GapN only in the early growth phase, and subsequently shift this combination-type glycolysis to one that depends only on GapN in the rest of the growth phase. To achieve this, we expressed gapA under the myo-inositol-inducible promoter of iolT1 encoding a myo-inositol transporter in strain RE2. The resulting strain RE2A(iol) was engineered into an l-lysine producer by introduction of a plasmid carrying the desensitized lysC, followed by examination for culture conditions with myo-inositol supplementation. We found that as a higher concentration of myo-inositol was added to the seed culture, the following fermentation period became shorter while maintaining a high level of l-lysine production. This finally reached a fermentation period comparable to that of the control GapA strain, and yielded a 1.5-fold higher production rate compared with strain RE2. The transcript level of gapA, as well as the GapA activity, in the early growth phase increased in proportion to the myo-inositol concentration and then fell to low levels in the subsequent growth phase, indicating that improved growth was a result of increased GapA activity, especially in the early growth phase. Moreover, blockade of the pentose phosphate pathway through a defect in glucose 6-phosphate dehydrogenase did not significantly affect l-lysine production in the engineered GapN strains, while a drastic decrease in l-lysine production was observed for the control GapA strain. Determination of the intracellular NADPH/NADP(+) ratios revealed that the ratios in the engineered strains were significantly higher than the ratio of the control GapA strain irrespective of the pentose phosphate pathway. These results demonstrate that our strain engineering strategy allows efficient l-lysine production independent of the oxidative pentose phosphate pathway.


Assuntos
Corynebacterium glutamicum/fisiologia , Gliceraldeído-3-Fosfato Desidrogenases/genética , Lisina/biossíntese , Lisina/genética , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/fisiologia , Streptococcus mutans/genética , Vias Biossintéticas/fisiologia , Clonagem Molecular/métodos , Melhoramento Genético/métodos , Lisina/isolamento & purificação , Via de Pentose Fosfato/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus mutans/metabolismo
3.
Appl Microbiol Biotechnol ; 90(4): 1443-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21452034

RESUMO

Corynebacterium glutamicum uses the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) to uptake and phosphorylate glucose; no other route has yet been identified. Disruption of the ptsH gene in wild-type C. glutamicum resulted, as expected, in a phenotype exhibiting little growth on any of the PTS sugars: glucose, fructose, and sucrose. However, a suppressor mutant that grew on glucose but not on the other two sugars was spontaneously isolated from the PTS-negative strain WTΔptsH. The suppressor strain SPH2, unlike the wild-type strain, exhibited a phenotype of resistance to 2-deoxyglucose which is known to be a toxic substrate for the glucose-PTS of this microbe, suggesting that strain SPH2 utilizes glucose via a different system involving a permease and native glucokinases. Analysis of the C. glutamicum genome sequence using Escherichia coli galactose permease, which can transport glucose, led to the identification of two candidate genes, iolT1 and iolT2, both of which have been reported as myo-inositol transporters. When cultured on glucose medium supplemented with myo-inositol, strain WTΔptsH was able to consume glucose, suggesting that glucose uptake was mediated by one or more myo-inositol-induced transporters. Overexpression of iolT1 alone and that of iolT2 alone under the gapA promoter in strain WTΔptsH rendered the strain capable of growing on glucose, proving that each transporter played a role in glucose uptake. Disruption of iolT1 in strain SPH2 abolished growth on glucose, whereas disruption of iolT2 did not, revealing that iolT1 was responsible for glucose uptake in strain SPH2. Sequence analysis of the iol gene cluster and its surrounding region identified a single-base deletion in the putative transcriptional regulator gene Cgl0157 of strain SPH2. Introduction of the frameshift mutation allowed strain WTΔptsH to grow on glucose, and further deletion of iolT1 abolished the growth again, indicating that inactivation of Cgl0157 under a PTS-negative background can be a means by which to express the iolT1-specified glucose uptake bypass instead of the native PTS. When this strategy was applied to a defined lysine producer, the engineered strain displayed increased lysine production from glucose.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Glucose/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Regulação Bacteriana da Expressão Gênica , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA